Unsupervised Cross-Spectral Stereo Matching by Learning to Synthesize

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Cross-Spectral Stereo Matching using Dense Gradient Features

Here we address the problem of scene depth recovery within cross-spectral stereo imagery (each image sensed over a differing spectral range). We compare several robust matching techniques which are able to capture local similarities between the structure of cross-spectral images and a range of stereo optimisation techniques for the computation of valid dense depth estimates for this case. As th...

متن کامل

Unsupervised Spectral Learning

In spectral clustering and spectral image segmentation, the data is partioned starting from a given matrix of pairwise similarities S. the matrix S is constructed by hand, or learned on a separate training set. In this paper we show how to achieve spectral clustering in unsupervised mode. Our algorithm starts with a set of observed pairwise features, which are possible components of an unknown,...

متن کامل

Learning Two-View Stereo Matching

We propose a graph-based semi-supervised symmetric matching framework that performs dense matching between two uncalibrated wide-baseline images by exploiting the results of sparse matching as labeled data. Our method utilizes multiple sources of information including the underlying manifold structure, matching preference, shapes of the surfaces in the scene, and global epipolar geometric const...

متن کامل

Unsupervised Spectral Learning of FSTs

Finite-State Transducers (FST) are a standard tool for modeling paired inputoutput sequences and are used in numerous applications, ranging from computational biology to natural language processing. Recently Balle et al. [4] presented a spectral algorithm for learning FST from samples of aligned input-output sequences. In this paper we address the more realistic, yet challenging setting where t...

متن کامل

Learning to Synthesize

In many scenarios we need to find the most likely program under a local context, where the local context can be an incomplete program, a partial specification, natural language description, etc. We call such problem program estimation. In this paper we propose an abstract framework, learning to synthesis, or L2S in short, to address this problem. L2S combines four tools to achieve this: syntax ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence

سال: 2019

ISSN: 2374-3468,2159-5399

DOI: 10.1609/aaai.v33i01.33018706